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Background & Motivation 
• Traditional cache engines (e.g., Redis, CacheLib, Memcached) rely on exact key matches:
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Insert:         Key123   →   Value123

Lookup:      Key123

Lookup:      Key124

(miss, even if the data it refers to is largely overlapped)
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Background & Motivation 
• Many emerging applications exhibit complex and irregular data layouts: 
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HPC: Multi-dimensional Fields LLM: Long ContextEarth Observation: Sensors
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Background & Motivation 
• And the requested data from different queries are partially overlapped:
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HPC: Multi-dimensional Fields LLM: Long ContextEarth Observation: Sensors

Previous Request New Request

Limitations of Traditional Caches: No Reuse of Partially Overlapped Data!
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Background & Motivation 
• In many applications, exact query repetition is rare [23, 41], 

• Content-level overlap across queries is more common [8, 22].

• However, 
1. No mechanism to convert metadata into simple unique cache keys while identifying partial overlaps.

2. Typical Hash-based indexing only supports exact matches, resulting in low hit rates and inefficiency.

3. Directly caching overlapped data causes duplication across items, wasting cache capacity.
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Background & Motivation 
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We conduct a simple experiment with cache size: ~10% of the total dataset

Query-Level Duplication: exact duplicate queries in the dataset

Content-Level Overlap: content similarity between different queries, even if they are not identical

Similar Performance with Different Content-Level Overlaps → 

                                                                  Traditional Cache Engines Fail to Reuse Partially Overlapped Data!



ASU-IDI

Research Objective and Challenges
Design a cache framework that can actively reuse partially overlapping content 
from cached items to improve overall application performance.
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Research Objective and Challenges
Design a cache framework that can actively reuse partially overlapping content 
from cached items to improve overall application performance.
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The workflow of reusing partial overlapping content:

Identify the Overlaps 
from Local Cache

New Request

Fetch from Local Cache

Fetch from Backend 
or New Generated

Overlapped Part

Missed Part

Integrate as Final ResultsUpdate

range 
query
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Research Objective and Challenges
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Identify the Overlap 
from Local Cache

New Request

Fetch from Local Cache

Fetch from Backend 
or New Generated

Overlapped Part

Missed Part

Integrate as Final ResultsUpdate

① [Generality] How can we support diverse data structures? 
E.g., various high-dimensional or nested data.

However, this workflow comes with the following challenges:

② [Efficiency] How can we efficiently parse complex overlaps?
(Traditional cache keys struggle to identify partial overlaps.)

③ [Trade-off] When should we use local cache? 
(Balancing performance benefits vs. overheads.)

④ [Duplication and Fragment] 
How should local cache be managed?
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Mosaic-Cache Design Overview

Overall Structure of Mosaic-Cache
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① [Generality] 

② [Efficiency] 

③ [Trade-off] 

④ [Duplication and Fragment] 
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Mosaic-Cache Design Overview

Overall Structure of Mosaic-Cache
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Compatible with traditional caches 
to avoid reinventing the wheel
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Mosaic-Cache Design
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User Application
class 3DGrid: public Area{
    vector Start;
    vector Count;

    CalculateIntersectSize() override;
    NdCut() override;
    NdCopy() override;
    ToString() override;
}

Overlap-Aware Interface

① [Generality]1. Overlap-Aware Interface
Mosaic-Cache pre-define user-customized interfaces to allow user to design:

• Complex data structure

• How to calculate the intersect size

• How to extract the overlapped area from previous requests

• How to integrate the pieces together

• Convert complex metadata into unique identifiers
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Mosaic-Cache Design
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② [Efficiency]2. Metadata Manager
Mosaic-Cache provides an in-memory manager to handle complex metadata, enabling:

• Efficient indexing without frequent key serialization/deserialization

• Recursively identify maximum overlap items to generate the partition strategy

• Customizable parameters (e.g., visit_num) to track access frequency and data hotness

Complex query: Metadata Manager

Partition Strategyuser-customized interfaces 

maximum overlap item
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Mosaic-Cache Design
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③ [Trade-off] 3. Fetch Planner
Identifying, partitioning, and integrating overlapping introduce extra overheads.

• Sometimes directly fetching data from the backend is more efficient.

Mosaic-Cache introduces a Fetch Planner to

• Continuously collects previous queries and system performance

• Determine how much of the local cache to reuse

Fetch Planner 

Previous Queries &
System Performance

Partition Limits

Metadata Manager
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Mosaic-Cache Design
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4. Async Merger

Hottest Sub-leaf Node

Key-Value Cache

Low-Speed Storage

Async Merger

merge

insert new

fetch missing

④ [Duplication and Fragment] 

Metadata Manager

& remove old

Mosaic-Cache introduces an Async Merger to

• Merge hot and partially overlapped cache items into larger units

new leaf
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Mosaic-Cache Design Overview

Overall Structure of Mosaic-Cache
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① [Generality] 

② [Efficiency] 

③ [Trade-off] 

④ [Duplication and Fragment] 
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Evaluation
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Scenario: 3D Combustion Grid Data Analysis (ORNL)

Data Size: ~1.5 TB

Application: ADIOS2 (Adaptable Input/Output System v2)

Query Workload: 1,000 randomly ordered range queries per test

Query Size: ~10 MB each → ~10 GB total per test

Cache Size: 1GB, 10% of the total

Baseline:

• No Cache: All from Backend (ORNL Remote FS)

• KV-Cache: Traditional Cache Engine

• Meta-Match: Traditional Cache Engine (Parse all cache keys from strings)

HPC: Multi-dimensional Fields 
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Evaluation
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1. Impact of Overlap

Setting: No Duplicate Queries; Varying Content Overlap (0%–98%)

No Cache & KV-Cache: 

• Stable, high latency (no overlap benefit)

Meta-Match:

• Latency first drops with overlap

• Rises again at high overlap due to key parsing

MOSAIC:

• Latency keeps decreasing

• Obvious performance gains when overlap > 80%
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Evaluation
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2. Overall Performance
No Overlap (0%): All caches show overhead, Mosaic-Cache ≈ others

Small Overlap (50%): Mosaic-Cache & Meta-Match outperform others via partial reuse

High Overlap (98%): Mosaic-Cache shows best performance (No duplicate queries.)
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Evaluation
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3. Impact of Cache Size

Varying Cache Size to explain MOSAIC's sharp performance jump from 75% → 80% overlap

At 75% overlap:

• Needs ≥5 GB cache for optimal performance

• Smaller caches → early eviction & lower hit ratio

At 80% overlap:

• 1 GB cache is sufficient
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Evaluation
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4. Impact of Backend Access Latency

Vary storage latency: 2 ms (local same shelf) → 70 ms (Remote FS), 0% exact match, 80% overlap

MOSAIC-Cache 

• Consistently outperforms baselines across all latency setups

• At low latency, Mosaic favors direct access to reduce overhead

• lower hit ratio, but better performance

Meta-Match

• High hit ratio, but suffers from reuse overhead
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Conclusion and Future Work
Mosaic-Cache

◦ Enables content-level partial reuse

◦ Supports customizable caching components

◦ Achieves up to 4.1× speedup on real HPC datasets

◦ Minimal overhead in worst cases

Next Steps:
◦ Extend to popular application scenarios

◦ Evaluate with more real-world traces & datasets
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Thank You!

Q & A
Contact

Chang Guo (cguo51@asu.edu)

Zhichao Cao (Zhichao.Cao@asu.edu)

https://asu-idi.github.io/contact/

ASU-IDI

https://asu-idi.github.io/contact/

