U'hlqckmg the‘Unusable A Proactive Caching
Framework- for Réusmg Partial Overlapped Data

[ . 9
8\ O B ‘.

KN\ °
P % Chang, G_uol’z,‘Norbert Podhorszki?, Greg Eisenhauer?,
~ Zhtwen Xiel, Scott Klasky?, Zhichao Cao!

b o 1Arizona State University
S AON ® ~ ° 20ak Ridge National Laboratory
= o 3Georgia Institute of Technology

g—.zﬂ ASU-IDI % Engmeerlng

nnnnnnnnnnnnnnnnnnnnn



Background & Motivation

* Traditional cache engines (e.g., Redis, CachelLib, Memcached) rely on exact key matches:

Insert: Keyl123 — Valuel23

Lookup: Key123 4

Lookup: Keyl124 x

(miss, even if the data 1t refers to 1s largely overlapped)

. 022 * IraA.Fulton Schools of
‘_}t=_ﬂ ASU-IDI :%lEngin_eering
—a

rizona State University



Background & Motivation

* Many emerging applications exhibit complex and irregular data layouts:

U, yz plane, step 810

60
50 Shared Prefix Unique Suffixes
You are ChatGPT, a large language model [Hi, can you write a.. ]
40 trained by OpenAI, based on the GPT-4
architecture.
N 39 Knowledge cutoff: 2023-04 [Tetl me a funny... ]
Current date: 2023-11-16
20 | ina?
Image input capabilities: Enabled [Who s L R ]
Ll When you send a message containing [Debug this Python. .. ]
Python code to python, it will be
0 executed in a stateful Jupyter notebook
0 20 40 60 5 5 .
y enrivonment. Python will respond... [ Ignore all previous.. ]
Em [[] ________m
0.4 0.6 0.8

HPC: Multi-dimensional Fields Earth Observation: Sensors LLM: Long Context

.0

=5 ASU-IDI PSU trginesing

—_— Arizona State University



Background & Motivation

* And the requested data from different queries are partially overlapped:

Previous Request New Request

Shared Prefix Unique Suffixes

U, yz plane, step 810

60

"
40 @
5

. =

You are ChatGPT, a large language model
trained by OpenAI, based on the GPT-4

Hi, can you write a...

architecture. Tell £
30 Knowledge cutoff: 2023-04 [ ell me a runny... ]
() Ll - y ? Current date: 2023-11-16
|
20
b Image input capabilities: Enabled I Wi sl ALER TR
10 O o (% s
g When you send a message'cont‘:alnlng [Debug this Python. .. ]
Python code to python, it will be
00 20 20 50 executed in a stateful Jupyter noteboo
y enrivonment. Python will respond... Ignore all previous...
| N
0.4 0.6 0.8

HPC: Multi-dimensional Fields Earth Observation: Sensors LLM: Long Context

Limitations of Traditional Caches: No Reuse of Partially Overlapped Data!

.0

20« * Ira A.Fulton Schoolsof
JI—__:ﬂ ASU-IDI ESU Engineering

e Arizona State University



Background & Motivation

* In many applications, exact query repetition 1s rare [23, 41], x
* Content-level overlap across queries 1s more common [8, 22]. 4

* However,
1. No mechanism to convert metadata into simple unique cache keys while identifying partial overlaps.
2. Typical Hash-based indexing only supports exact matches, resulting in low hit rates and inefficiency.

3. Directly caching overlapped data causes duplication across items, wasting cache capacity.

B=0 ASU-IDI BSi Engineering
==

— Arizona State University



Background & Motivation

We conduct a simple experiment with cache size: ~10% of the total dataset

Query-Level Duplication: exact duplicate queries in the dataset

Content-Level Overlap: content similarity between different queries, even if they are not identical

No Cache B KV-Cache

No Cache B KV-Cache

105 0.49 105,
Z 0.44%8 043041 L 0.44 0.410.42 =
< 0.4 < 0.4
= = = =
; 0.5 = ; 0.5 =
op 0.2 D 02 e
- -] - -]
(o = [ -
< 0.03 s> < 0.03 3

0 | 0 |
0% 50% 98% 0% 50% 98%

Query-Level Duplication Ratio Query-Level Duplication Ratio

(a) Content-Level Overlap Ratio: 0% (b) Content-Level Overlap Ratio: 50%

Figure 1: Performance with Varying Overlap Ratios.

Similar Performance with Different Content-Level Overlaps —

Traditional Cache Engines Fail to Reuse Partially Overlapped Data!

“IraA. Ful_ton Schoo!s of
% Engineering
B—

Arizona State University



Research Objective and Challenges

Design a cache framework that can actively reuse partially overlapping content
from cached items to improve overall application performance.

28 4SULIDI




Research Objective and Challenges

Design a cache framework that can actively reuse partially overlapping content
from cached items to improve overall application performance.

The workflow of reusing partial overlapping content:

range [ Fetch from Local Cache ]
query Overlapped Part / \

g
Identify the Overlaps -
I Final Resul
from Local Cache } Update { ntegrate as Final Resu ts}

Missed Part \ { Fetch from Backend } /

or New Generated

New Request sy

“Z— 5 ASU-IDI PSU Engineering

o1 —

—_— Arizona State University



Research Objective and Challenges

However, this workflow comes with the following challenges:

(D [Generality] How can we support diverse data structures? (@ [Duplication and Fragment]
E.g., various high-dimensional or nested data. / How should local cache be managed?
[ Fetch from Local Cache ]
Overlapped Part / \
Identlfy the Overlap :
New Request I Final Resul
q —P from Local Cache Update { ntegrate as Final Resu ts}

or New Generated

/ Missed Pa“\ { Fetch from Backend } /

(2 [Efficiency] How can we efficiently parse complex overlaps? (3 [Trade-off] When should we use local cache?
(Traditional cache keys struggle to identify partial overlaps.) (Balancing performance benefits vs. overheads.)

= & ASU-IDI BSU Engineering

=> Arizona State University




Mosaic-Cache Design Overview

User Application |Region query:
Start (x, y) & Count (m, n)

System Performance

Fetch Planner
l Partition Limits

(3 [Trade-off]

class 3DGrid: public Area{
vector Start;
vector Count;

@ [Generality] CalculatelntersectSizd) override;
NdCut() override;

NdCopy() override;
ToString() override;

(2 [Efficiency]

Overlap-Aware Interface Partition Strategy

Metadata Manager

0] ] insert metadata () l Hottest Sub-leaf Node T
|:| lookup insert insert merge
fetch Key-Value Cache —
]
Low-Speed Storage Async Merger
fetch [] Mosaic-Cache!

. (@ [Duplication and Fragment]
Overall Structure of Mosaic-Cache

“Z— 5 ASU-IDI PSU Engineering

/=

—_— Arizona State University



Mosaic-Cache Design Overview

______________________________

User Application  |Region query: E System Performance |

class 3DGrid: public Area{ Sty Cond i n): Fetch Planner :

vector Start; : !

vector Count; : l Partition Limits :

CalculatelntersectSiz) override; i :

NdCut() override; ! :

NdCopy() override; l :

ToString() override; : :

} — I :

Overlap-Aware Interface Partition Strategy | Metadata Manager | !

Compatible with traditional caches ] [] insert metadata (J | l Hottest Sub-leaf Node T |
to avoid reinventing the wheel lookup e ! :
insert . merge :

Key-Value Cache : — :

fetch ! o |

Low-Speed Storage i Async Merger i

fetch [ : Mosaic-Cache:

Overall Structure of Mosaic-Cache

“H=h ASU-IDI PSU B

—_— Arizona State University



Mosaic-Cache Design

1. Overlap-Aware Interface @ [Generality]

Mosaic-Cache pre-define user-customized interfaces to allow user to design:

User Application

* Complex data structure
class 3DGrid: public Area{

* How to calculate the intersect size vector Start;
vector Count;

* How to extract the overlapped area from previous requests | ,
CalculatelntersectSize() override,

NdCut() override;
NdCopy() override,
ToString() override;

* How to integrate the pieces together

* Convert complex metadata into unique identifiers

Overlap-Aware Interface

020 * Ira A.Fulton Schoolsof
,-};ﬂ ASU-IDI BSi Engineering
==

—_—] Arizona State University



Mosaic-Cache Design
2. Metadata Manager (2 [Efficiency]

Mosaic-Cache provides an in-memory manager to handle complex metadata, enabling:
 Efficient indexing without frequent key serialization/deserialization
* Recursively identify maximum overlap items to generate the partition strategy

* Customizable parameters (e.g., visit num) to track access frequency and data hotness

Complex query: Metadata Manager

> Partition Strategy

user-customized interfaces

maximum overlap item

i5=15 ASU-IDI FSU Engineering
>

— ] Arizona State University



Mosaic-Cache Design
3. Fetch Planner © [Trade-off]

Identifying, partitioning, and integrating overlapping introduce extra overheads.

* Sometimes directly fetching data from the backend 1s more efficient.

Q Previous Queries &
System Performance
Mosaic-Cache introduces a Fetch Planner to Fetch Planner

 Continuously collects previous queries and system performance 1 Partition Limits

 Determine how much of the local cache to reuse

Metadata Manager

B=70 ASU-IDI

—_—] Arizona State University



Mosaic-Cache Design

4. Async Merger @ [Duplication and Fragment]

Mosaic-Cache mtroduces an Async Merger to

* Merge hot and partially overlapped cache items into larger units
new leaf
Metadata Manager
Hottest Sub-leaf Node 1
v
fetch missing E
Low-Speed Storage merge
insert new [_| |:|
Key-Value Cache
& remove old Async Merger

°
. 029~ * Ira A.Fulton Schools of

,-};,4 ASU-IDI Engineering

—_— Arizona State University



Mosaic-Cache Design Overview

User Application |Region query:
Start (x, y) & Count (m, n)

System Performance

Fetch Planner
l Partition Limits

(3 [Trade-off]

class 3DGrid: public Area{
vector Start;
vector Count;

@ [Generality] CalculatelntersectSizd) override;
NdCut() override;

NdCopy() override;
ToString() override;

(2 [Efficiency]

Overlap-Aware Interface Partition Strategy

Metadata Manager

0] ] insert metadata () l Hottest Sub-leaf Node T
|:| lookup insert insert merge
fetch Key-Value Cache —
]
Low-Speed Storage Async Merger
fetch [] Mosaic-Cache!

. (@ [Duplication and Fragment]
Overall Structure of Mosaic-Cache

“Z— 5 ASU-IDI PSU Engineering

/=

—_— Arizona State University



Evaluation

Scenario: 3D Combustion Grid Data Analysis (ORNL) U, yz plane, step 810

60 1

Data Size: ~1.5TB 50

40

Application: ADIOS2 (Adaptable Input/Output System v2)

N 30

Query Workload: 1,000 randomly ordered range queries per test 201

104

Query Size: ~10 MB each — ~10 GB total per test

0

Cache Size: 1GB, 10% of the total y

ElN , N
o 0.4 0.6 0.8
Baseline:

HPC: Multi-dimensional Fields

* No Cache: All from Backend (ORNL Remote FS)
* KV-Cache: Traditional Cache Engine
* Meta-Match: Traditional Cache Engine (Parse all cache keys from strings)

B=0 ASU-IDI BSi Engineering
==

— Arizona State University



Evaluation
1. Impact of Overlap

Setting: No Duplicate Queries; Varying Content Overlap (0%—98%)

No Cache & KV-Cache:
 Stable, high latency (no overlap benefit) No Cache KV-Cache =@~ Meta-Match =—@=MOSAIC
Meta-Match: £ 0.4
* Latency first drops with overlap Zno,z
%
 Rises again at high overlap due to key parsin : : : : : : : :
g g p Yy parsing s No Cache " KV-Cache NI Meta-Match NN MOSAIC
MOSAIC: g 10
N 05
* Latency keeps decreasing E . | , 1 ) ,

_ , . 0% 25% 50% 75% 80% 85% 90% 95% 98%
* Obvious performance gains when overlap > 80% Content-Level Overlap Ratio

Figure 3: Impact of Overlap on Query Performance.

“H=h ASU-IDI PSU B

—_— Arizona State University



Evaluation

2. Overall Performance

No Overlap (0%): All caches show overhead, Mosaic-Cache = others
Small Overlap (50%): Mosaic-Cache & Meta-Match outperform others via partial reuse
High Overlap (98%): Mosaic-Cache shows best performance (No duplicate queries.)

No Cache KV-Cache I Meta-Match Il MOSAIC No Cache KV-Cache I Meta-Match Il MOSAIC No Cache KV-Cache I Meta-Match Il MOSAIC
2% a2 o0s 0.49 2961 0490510, 2% s
> 0.44 0.430.41m 044 ¢ 4 < 0.44 041042039 0.41 0.4 o 04 = 038 0.4 0.4 0.4
g g g b~ 0.32
=03 = 0.3 = 0.3
) ) )
> > > 0.11 0.11
< 0.03 0.03 0.03 < 0.03 0-06 0.05 < L 0.03 0-06 0.06

0- f 0 | 0 .
o No Cache KV-Cache Meta-Match Il MOSAIC ° No Cache KV-Cache Meta-Match Bl MOSAIC o No Cache KV-Cache Meta-Match Il MOSAIC
= = =
é 1.0 0.98 0.98 0.98 é 1.01 0.98 0.99 0.99 é 1.0 0.98 0.98 0.98 0.98 0.98 0.99 0.99
8 S 05 N o5
03 0.14 0.14 0.15 n 031 0.15 %27 0.26 03 0.14
£ o 00 00 [ -‘E’O 0 o 007008 ™= o éo 0 0 0 0
0% 50% 98% 0% 50% 98% 0% 50% 98%
Query-Level Duplication Ratio Query-Level Duplication Ratio Query-Level Duplication Ratio
(a) Content-Level Overlap Ratio: 0% (b) Content-Level Overlap Ratio: 50% (c) Content-Level Overlap Ratio: 98%

Figure 4: Overall Performance Comparison Across Query-Level Duplication and Content-Level Overlap Ratios.

5= 5 ASU-IDI , PSU Engineering

—_— Arizona State University



Evaluation
3. Impact of Cache Size

Varying Cache Size to explain MOSAIC's sharp performance jump from 75% — 80% overlap

At 75% overlap:
€ Z0.4-
. % 0.4 "
* Needs >5 GB cache for optimal performance g N E . :ﬁ
= [l
. . . . g" 0.2 No Cache === Meta-Match ?,” 021
e Smaller caches — early eviction & lower hit ratio = KV-Cache —e—MOSAIC <
=] 0 =] 0
ﬁ 1.0 No Cache Meta-Match ﬁ 1.0
~ KV-Cache NN MOSAIC =
% 0.5 % 0.5
At 80% overlap: s s
0.1 025 05 1 2 5 10 0.1 025 05 1 2 5 10
Cache Size (GB) Cache Size (GB)

* 1 GB cache 1s sufficient
(a) Content-Level Overlap Ratio: 75%  (b) Content-Level Overlap Ratio: 80%

Figure 5: Impact of Cache Size on Query Performance.

=5 ASU-IDI PSU Engincering

—_— Arizona State University



Evaluation
4. Impact of Backend Access Latency

Vary storage latency: 2 ms (local same shelf) — 70 ms (Remote FS), 0% exact match, 80% overlap

MOSAIC-Cache

* Consistently outperforms baselines across all latency setups

* At low latency, Mosaic favors direct access to reduce overhead -~ iy No Cache ~— KV-Cache —@— Meta-Match —8=MOSAIC
* lower hit ratio, but better performance E 0.4 P
gb 0.2 1 4.___’—__.___*——_‘
< 0 o *——0—
"g 10 I No Calche | KV—Caclhe IMeta-l\'Ilatch — MOSAIIC
&
Meta-Match §05 J J I
coL "M ' W TN N "§ N O
: : . == 0.2 1 5 10 20 30 50 70
* High hit ratio, but suffers from reuse overhead Data Access Latency (ms)

Figure 6: Impact of Data Access Latency.

“IraA. Ful_ton Schoo!s of
% Engineering

e
S ——
o ,42'; ASU-IDI
Arizona State University

- —=ap



Conclusion and Future Work

Mosaic-Cache
o Enables content-level partial reuse
o Supports customizable caching components

o Achieves up to 4.1x speedup on real HPC datasets

_______________________________

o Minimal overhead in worst cases User Application  Region query: ") System Performance
Cl“jjjﬁgﬁf ublic Areaf Ey & Lo n) Fetch Planner
vector Cour;t; i Partition Limits
Calculatelnter.secltSize() override; E
Next Steps: NGt owrrie _§
; ToString() override; P|—| |;| i
. . . Overlanp-As Interf: artition Strategy |
o Extend to popular application scenarios e\ —,|  Motadata Manager
H B insert metadata (J | Hottest Sub-leaf Node
) lookup insert . |
> Evaluate with more real-world traces & datasets ) [ey-vaweGaohe] ™" | |D__| merge
| O
ILow-Speed Storage| : Async Merger |
fetch [] i Mosaic-Cache

55 ASU-IDI PSU Ergincering

/=
—_— Arizona State University



Thank You!
Q & A ASU-IDI

Contact

Chang Guo (cguo51(@asu.edu)
Zhichao Cao (Zhichao.Cao@asu.edu)

https://asu-idi.github.io/contact/



https://asu-idi.github.io/contact/

