
ASU-IDI

ASU-IDI

Background & Motivation
• Traditional cache engines (e.g., Redis, CacheLib, Memcached) rely on exact key matches:

2

Insert: Key123 → Value123

Lookup: Key123

Lookup: Key124

(miss, even if the data it refers to is largely overlapped)

ASU-IDI

Background & Motivation
• Many emerging applications exhibit complex and irregular data layouts:

3

HPC: Multi-dimensional Fields LLM: Long ContextEarth Observation: Sensors

ASU-IDI

Background & Motivation
• And the requested data from different queries are partially overlapped:

4

HPC: Multi-dimensional Fields LLM: Long ContextEarth Observation: Sensors

Previous Request New Request

Limitations of Traditional Caches: No Reuse of Partially Overlapped Data!

ASU-IDI

Background & Motivation
• In many applications, exact query repetition is rare [23, 41],

• Content-level overlap across queries is more common [8, 22].

• However,
1. No mechanism to convert metadata into simple unique cache keys while identifying partial overlaps.

2. Typical Hash-based indexing only supports exact matches, resulting in low hit rates and inefficiency.

3. Directly caching overlapped data causes duplication across items, wasting cache capacity.

5

ASU-IDI

Background & Motivation

6

We conduct a simple experiment with cache size: ~10% of the total dataset

Query-Level Duplication: exact duplicate queries in the dataset

Content-Level Overlap: content similarity between different queries, even if they are not identical

Similar Performance with Different Content-Level Overlaps →

 Traditional Cache Engines Fail to Reuse Partially Overlapped Data!

ASU-IDI

Research Objective and Challenges
Design a cache framework that can actively reuse partially overlapping content
from cached items to improve overall application performance.

7

ASU-IDI

Research Objective and Challenges
Design a cache framework that can actively reuse partially overlapping content
from cached items to improve overall application performance.

8

The workflow of reusing partial overlapping content:

Identify the Overlaps
from Local Cache

New Request

Fetch from Local Cache

Fetch from Backend
or New Generated

Overlapped Part

Missed Part

Integrate as Final ResultsUpdate

range
query

ASU-IDI

Research Objective and Challenges

9

Identify the Overlap
from Local Cache

New Request

Fetch from Local Cache

Fetch from Backend
or New Generated

Overlapped Part

Missed Part

Integrate as Final ResultsUpdate

① [Generality] How can we support diverse data structures?
E.g., various high-dimensional or nested data.

However, this workflow comes with the following challenges:

② [Efficiency] How can we efficiently parse complex overlaps?
(Traditional cache keys struggle to identify partial overlaps.)

③ [Trade-off] When should we use local cache?
(Balancing performance benefits vs. overheads.)

④ [Duplication and Fragment]
How should local cache be managed?

ASU-IDI

Mosaic-Cache Design Overview

Overall Structure of Mosaic-Cache

10

① [Generality]

② [Efficiency]

③ [Trade-off]

④ [Duplication and Fragment]

ASU-IDI

Mosaic-Cache Design Overview

Overall Structure of Mosaic-Cache

11

Compatible with traditional caches
to avoid reinventing the wheel

ASU-IDI

Mosaic-Cache Design

12

User Application
class 3DGrid: public Area{
 vector Start;
 vector Count;

 CalculateIntersectSize() override;
 NdCut() override;
 NdCopy() override;
 ToString() override;
}

Overlap-Aware Interface

① [Generality]1. Overlap-Aware Interface
Mosaic-Cache pre-define user-customized interfaces to allow user to design:

• Complex data structure

• How to calculate the intersect size

• How to extract the overlapped area from previous requests

• How to integrate the pieces together

• Convert complex metadata into unique identifiers

ASU-IDI

Mosaic-Cache Design

13

② [Efficiency]2. Metadata Manager
Mosaic-Cache provides an in-memory manager to handle complex metadata, enabling:

• Efficient indexing without frequent key serialization/deserialization

• Recursively identify maximum overlap items to generate the partition strategy

• Customizable parameters (e.g., visit_num) to track access frequency and data hotness

Complex query: Metadata Manager

Partition Strategyuser-customized interfaces

maximum overlap item

ASU-IDI

Mosaic-Cache Design

14

③ [Trade-off] 3. Fetch Planner
Identifying, partitioning, and integrating overlapping introduce extra overheads.

• Sometimes directly fetching data from the backend is more efficient.

Mosaic-Cache introduces a Fetch Planner to

• Continuously collects previous queries and system performance

• Determine how much of the local cache to reuse

Fetch Planner

Previous Queries &
System Performance

Partition Limits

Metadata Manager

ASU-IDI

Mosaic-Cache Design

15

4. Async Merger

Hottest Sub-leaf Node

Key-Value Cache

Low-Speed Storage

Async Merger

merge

insert new

fetch missing

④ [Duplication and Fragment]

Metadata Manager

& remove old

Mosaic-Cache introduces an Async Merger to

• Merge hot and partially overlapped cache items into larger units

new leaf

ASU-IDI

Mosaic-Cache Design Overview

Overall Structure of Mosaic-Cache

16

① [Generality]

② [Efficiency]

③ [Trade-off]

④ [Duplication and Fragment]

ASU-IDI

Evaluation

17

Scenario: 3D Combustion Grid Data Analysis (ORNL)

Data Size: ~1.5 TB

Application: ADIOS2 (Adaptable Input/Output System v2)

Query Workload: 1,000 randomly ordered range queries per test

Query Size: ~10 MB each → ~10 GB total per test

Cache Size: 1GB, 10% of the total

Baseline:

• No Cache: All from Backend (ORNL Remote FS)

• KV-Cache: Traditional Cache Engine

• Meta-Match: Traditional Cache Engine (Parse all cache keys from strings)

HPC: Multi-dimensional Fields

ASU-IDI

Evaluation

18

1. Impact of Overlap

Setting: No Duplicate Queries; Varying Content Overlap (0%–98%)

No Cache & KV-Cache:

• Stable, high latency (no overlap benefit)

Meta-Match:

• Latency first drops with overlap

• Rises again at high overlap due to key parsing

MOSAIC:

• Latency keeps decreasing

• Obvious performance gains when overlap > 80%

ASU-IDI

Evaluation

19

2. Overall Performance
No Overlap (0%): All caches show overhead, Mosaic-Cache ≈ others

Small Overlap (50%): Mosaic-Cache & Meta-Match outperform others via partial reuse

High Overlap (98%): Mosaic-Cache shows best performance (No duplicate queries.)

ASU-IDI

Evaluation

20

3. Impact of Cache Size

Varying Cache Size to explain MOSAIC's sharp performance jump from 75% → 80% overlap

At 75% overlap:

• Needs ≥5 GB cache for optimal performance

• Smaller caches → early eviction & lower hit ratio

At 80% overlap:

• 1 GB cache is sufficient

ASU-IDI

Evaluation

21

4. Impact of Backend Access Latency

Vary storage latency: 2 ms (local same shelf) → 70 ms (Remote FS), 0% exact match, 80% overlap

MOSAIC-Cache

• Consistently outperforms baselines across all latency setups

• At low latency, Mosaic favors direct access to reduce overhead

• lower hit ratio, but better performance

Meta-Match

• High hit ratio, but suffers from reuse overhead

ASU-IDI

Conclusion and Future Work
Mosaic-Cache

◦ Enables content-level partial reuse

◦ Supports customizable caching components

◦ Achieves up to 4.1× speedup on real HPC datasets

◦ Minimal overhead in worst cases

Next Steps:
◦ Extend to popular application scenarios

◦ Evaluate with more real-world traces & datasets

22

23

Thank You!

Q & A
Contact

Chang Guo (cguo51@asu.edu)

Zhichao Cao (Zhichao.Cao@asu.edu)

https://asu-idi.github.io/contact/

ASU-IDI

https://asu-idi.github.io/contact/

